Report on Two-Step Knowledge-Aided Iterative ESPRIT Algorithm

نویسندگان

  • Silvio F. B. Pinto
  • Rodrigo C. de Lamare
چکیده

In this work, we propose a subspace-based algorithm for direction-of-arrival (DOA) estimation, referred to as two-step knowledge-aided iterative estimation of signal parameters via rotational invariance techniques (ESPRIT) method (Two-Step KAIESPRIT), which achieves more accurate estimates than those of prior art. The proposed Two-Step KAI-ESPRIT improves the estimation of the covariance matrix of the input data by incorporating prior knowledge of signals and by exploiting knowledge of the structure of the covariance matrix and its perturbation terms. Simulation results illustrate the improvement achieved by the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).

متن کامل

AN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS

Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...

متن کامل

Strong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms

‎Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real Hilbert space‎. ‎So many have used algorithms involving the operator norm for solving split equality fixed point problem‎, ‎...

متن کامل

IFKSA-ESPRIT - Estimating the Direction of Arrival under the Element Failures in a Uniform Linear Antenna Array

This paper presents the use of Inverse Free Krylov Subspace Algorithm (IFKSA) with Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) for the Direction-of-Arrival (DOA) estimation under element failure in a Uniform Linear Antenna Array (ULA). Failure of a few elements results in sparse signal space. IFKSA algorithm is an iterative algorithm to find the dominant eigenva...

متن کامل

A Multi - step and Multi - level approach for Computer Aided Molecular Design

A general multi-step approach for setting up, solving and solution analysis of computer aided molecular design (CAMD) problems is presented. The approach differs from previous work within the field of CAMD since it also addresses the need for a computer aided problem formulation and result analysis. The problem formulation step incorporates a knowledge base for the identification and setup of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.10523  شماره 

صفحات  -

تاریخ انتشار 2017